Short Name of the University/Countrycode	AUP/4000
Date (Month/Year)	2019
TITLE OF THE Curricula/Module	Code
Global Navigation Satellite Systems (NAVSTAR, GLONASS, GALILEO, etc.)	

Teacher(s)	Department
Coordinating: Ass. Prof. Krum HRISTOV PhD Others:	Department of Economics

Study cycle	Level of the module	Type of the module
	Bachelor	
	Master	

Form ofdelivery	Duration	Language (s)
In class presentations and discussions	15 weeks	English
Practical training		

Prerequisites						
Prerequisites:	Co-requisites (if necessary):					
To know:						
None						

ECTS (Credits of the module)	Total student workload h	ours	Contact hours	Individual workhours					
3,5	110		72	38					
Aim of the module (course unit): competences foreseeen by the study programme									
For students to understand the principles underlying the use of GNSS at metre and sub-metre accuracy for applications in surveying, GIS, agriculture, asset management, and scientific studies.									
Learning outcomes of mo	Teach	ing/learningmethods	Assessment methods						
To know: The Major Satellite Navigatio they work To point: • Global and regional navigati	n Systems and how	Lectures seminars self-stud	, presentations, , practical lessons, y	Participation in discussions, Course project development,					

To explain:	Written test
• What is a satellite navigation system and how do	
they work?	Verbal exam
To numerate:	
 Current and Planned Global and Regional 	Quiz
Navigation Satellite Systems and Satellite-based	
Augmentations Systems	
To recognize:	
 Different forms of GNSS interference 	
To give examples of:	
 examples of accuracy and precision of gnss. 	
To describe:	
 The factors that make it difficult for a GNSS 	
receiver to calculate an exact position. Causes of	
GNSS denial and the methods used to mitigate	
them.	
To formulate:	
• The steps involved in using GNSS to determine	
time and position through to the end user	
application.	
To be able to:	
 Working with GPS Tracks and Points 	
Collection, processing and presentation of	
GNSS data;	
 Finding location; 	
 Map your property with high accuracy, 	
quickly and easily;	
• Find certain points in the field;	
Possess:	
• to build a map of agricultural fields;	
• to develop knowledge and understanding on	
coordinate and time systems;	
• to evaluate Field Survey using Low-Cost	
receiver for High-Accuracy positioning	

		C	Conta	ctwor	khou	Time and tasks for individual work			
Themes	Lectures	Consultations	Seminars	Practiaclwork	Laboratory work	Placements	Total contactwork	Individual work	Tasks
GNSS Overview	2	0	0	2	0	0	4	2	Satellite navigation system and how do they work; Types of satellite navigation systems;

New curricula in Precision Agriculture using GIS technologies and sensing data (CUPAGIS) Information Management Package

									Review of global and regional satellite systems;
									Regional Satellite-based Augmentation Systems;
									GNSS architecture.
Coordinate and time systems.	2	0	0	2	0	0	4	2	Introduction to coordinate system definition and realization concentrating on geometric definitions.
Basic GNSS Concepts	2	0	0	2	0	0	4	2	Steps involved in using GNSS to determine time and position through to the end user application – Satellites, Propagation, Reception, Computation, Application.
GPS (Global Positioning System, United States)	2	0	0	2	0	0	4	2	Overview of the components of the system: Space segment, Control segment, User segment; Modernization.
GLONASS (Global Navigation Satellite System, Russia)	2			2			4	2	Overview of the components of the system: Space segment, Control segment, User segment; Modernization.
Galileo and BeiDou Navigation Satellite System (China)	2			2			4	2	Overview of the components of the system: Space segment, Control segment, User

							segment; Modernization.
IRNSS (Indian Regional Navigation Satellite System, India) and QZSS (Quasi-Zenith Satellite System, Japan)	2		2		4	4	Overview of the components of the system: Space segment, Control segment, User segment; Modernization.
GNSS Error Sources. Types of errors	4		2		6	2	Techniques used to improve GNSS accuracy - Multi- Constellation and Multi-Frequency; Satellite Based Augmentation Systems; Real-Time Kinematic (RTK); Precise Point Positioning (PPP); GNSS Data Post- Processing.
GNSS and other navigation systems	2		2		4	2	GNSS+ Inertial Navigation System (INS); Odometers; Vision Aided Navigation; Sensor Fusion.
GNSS Denial	2		2		4	2	Causes of GNSS denial and the methods used to mitigate them – Interference; Anti-Jam Antennas; Multiple Navigation Sensors; Spoofing; Signal Blockage;

									Constellation Failure.
GNSS Applications and Equipment. Commercial applications. GNSS Equipment	2			2			4	2	Commercial applications; GNSS Equipment.
GNSS in Precision Farming and Agriculture Technology	4			4			8	4	GNSS application in Quality management; Reduced workload; Environmental Protection; Consumer Protection; Benefits.
Applications for agricultural – Mobile and computer applications	4			14			18	10	BaseCamp, DNR GPS, ExpertGPS, Locus Map, MachineryGuide, Geo Area - GPS Area Calculator, Field Navigator, AgroPilot, Soil Sampler, Farm Tracks, Tractor Guide, AgriBus- NAVI, Trimble Ag Mobile, Map Pad GPS Land Surveys & Measurements, eFarmer, etc.
Total	32	0	0	40	0	0	72	38	

Assessment strategy	Weight in %	Deadlines	Assessment criteria
Running control 1	15	7 week	Test and/or Quiz
Running control 2	15	13 week	Test and/or Quiz
Final exam	70	15 week	Course project development

Compulsory literature/Author	Year of issue	Title	No of periodical or volume	Place of printing. Printing house or internet link
European GNSS Agency	2018	GNSS User Technology Report	Issue 2	Luxembourg: Publications Office of the European Union, 2018
				https://www.gsa.europa.eu/sys tem/files/reports/gnss_user_te ch_report_2018.pdf
				doi:10.2878/743965
Bernhard Hofmann-	2008	GNSS - GPS, GLONASS,		Springer-Verlag Wien;
Lichtenegger, Elmar Wasle		Gameo & more		doi:10.1007/978-3-211- 73017-1
J. Sanz Subirana, J.M. Juan Zornoza and M. Hernández-Pajares	2013	GNSS DATA PROCESSING	Volume I: Fundamentals and Algorithms	https://gssc.esa.int/navipedia/ GNSS_Book/ESA_GNSS- Book_TM-23_Vol_I.pdf
	2008	GLOBAL POSITIONING SYSTEM STANDARD POSITIONING SERVICE PERFORMANCE STANDARD	4th Edition,	https://www.gps.gov/technical /ps/2008-SPS-performance- standard.pdf
China Satellite Navigation Office	2019	BeiDou Navigation Satellite System Signal In Space Interface Control Document Open Service Signal B1I	Version 3.0	http://en.beidou.gov.cn/SYST EMS/Officialdocument/20190 2/P020190227601370045731. pdf
Whelan, B. and J. Taylor	2013	Precision Agriculture for Grain Production Systems		
European Union	2016	Galileo - Open Service - Signal In Space Interface Control Document (OS SIS ICD V1.3)	Issue 1 rev. 3	https://www.gsc- europa.eu/system/files/galileo _documents/Galileo-OS-SIS- ICD.pdf
European Union	2019	Galileo - Open Service - Signal In Space Interface Control Document (OS SIS ICD V1.3)	Issue 1 rev. 1	https://www.gsc- europa.eu/system/files/galileo _documents/Galileo-OS- SDD.pdf
Indian Space Research Organization	2017	Indian Regional Navigational Satellite System SIGNAL IN SPACE ICD	version 1.1	BANGALORE https://www.isro.gov.in/sites/ default/files/irnss_sps_icd_ver

		FOR STANDARD POSITIONING SERVICE		sion1.1-2017.pdf		
Manuel Perez-Ruiz and Shrini K. Upadhyaya	2012	GNSS in Precision Agricultural Operations		http://dx.doi.org/10.5772/504 48		
International Civil Aviation Organization	2005	Global Navigation Satellite System (GNSS) Manual	First Edition	Canada https://www.icao.int/Meetings /PBN- Symposium/Documents/9849 _cons_en%5B1%5D.pdf		
Additional literature						
European GNSS Agency	2017	GNSS Market Report	Issue 5	Luxembourg: Publications Office of the European Union https://www.gsa.europa.eu/sys tem/files/reports/gnss_mr_201 7.pdf doi:10.2878/0426		
European GNSS Agency	2018	Report on agriculture user needs and requirements	Issue 1	Luxembourg: Publications Office of the European Union https://www.gsc- europa.eu/system/files/galileo _documents/Agri-Report-on- User-Needs-and- Requirements-v1.0.pdf		
Pérez Bartolomé, Javier & Maufroid, Xavier & Fernandez-Hernandez, Ignacio & López-Salcedo, José A. & Seco-Granados, Gonzalo.	2014	Overview of Galileo System.		Springer Ltd doi:10.1007/978-94-007- 1830-2_2.		
International Civil Aviation Organization	2005	Global Navigation Satellite System (GNSS) Manual	First Edition	Canada https://www.icao.int/Meetings /PBN- Symposium/Documents/9849 _cons_en%5B1%5D.pdf		

ANOTATION /course summery

For students to understand the principles underlying the use of GNSS at metre and sub-metre accuracy for applications in surveying, GIS, agriculture, asset management, and scientific studies.

The student will learn the basics of navigation using Global Navigation Satellite Systems (GNSS), such as GPS signals, and other navigation technologies.

The student will also get a hands-on training on the GNSS receiver functionalities via a course work assignment.

List of themes and short description

Themes	Contact work hours
GNSS Overview	4
History and introduction on the major GNSS systems (GPS, GLONASS, GALILEO, BEIDOU, SBAS);	
Physical principles that operate in GNSS;	
Coordinate and time systems	4
Introduction to coordinate system definition and realization concentrating on geometric definitions	
Basic GNSS Concepts	4
The steps involved in using GNSS to determine time and position through to the end user application.	
Introduction on GNSS signal structure and properties;	
Introduction on signal processing techniques;	
Introduction on GNSS receiver architectures;	
GPS (Global Positioning System, United States)	4
Overview of the components of the system – Space segment, Control segment and User segment. Modernization.	
GLONASS (Global Navigation Satellite System, Russia)	4
Overview of the components of the system – Space segment, Control segment and User segment. Modernization.	
Galileo and BeiDou Navigation Satellite System (China)	4
Overview of the components of the system – Space segment, Control segment and User segment. Modernization.	
IRNSS (Indian Regional Navigation Satellite System, India) and QZSS (Quasi- Zenith Satellite System, Japan)	4
Overview of the components of the system – Space segment, Control segment and User	

segment. Modernization.	
GNSS Error Sources. Types of errors	6
Principles associated with high accuracy differential GNSS positioning. After briefly reviewing the relevant concepts of GNSS positioning, the lecture presents the different measurements and error sources that limit positioning accuracy. The geographic and temporal variability of the errors will be addressed, as appropriate. Once the GNSS errors are understood, focus turns to mitigation of these errors through measurement differencing, linear measurement combinations, and different augmentation approaches (i.e., DGNSS, RTK, NRTK, and PPP). The motivation for these approaches will be explained in the context of trying to mitigate errors and resolve the carrier phase ambiguities. Mathematical formulations for the various augmentation approaches are introduced. Different augmentation message formats are also presented. The lecture will conclude with a discussion of the future prospects for the GNSS augmentation technique.	
GNSS and other navigation systems	4
Review of systems in which GNSS receivers work with other sensors to provide position and navigation when GNSS conditions are difficult	
GNSS Denial	4
Causes of GNSS denial and the methods used to mitigate them – Interference, Anti-Jam Antennas, Multiple Navigation Sensors, Spoofing, Signal Blockage, Constellation Failure.	
GNSS Applications and Equipment. Commercial applications. GNSS Equipment	4
Review of some of the incredible GNSS applications and equipment that are now available.	
GNSS in Precision Farming and Agriculture Technology	8
GNSS in Precision Farming and Agriculture Technology. GNSS application in Quality management, Reduced workload, Environmental Protection, Consumer Protection, Choise of GPS devices, Benefits,	
Applications for agricultural – Mobile and computer applications	18
How mobile apps and technologies help farmers.	